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The overhead of interprocessor communication is a major factor in 
limiting the performance of parallel computer systems. The complete 
exchange is the severest communication pattern in that it requires each 
processor to send a distinct message to every other processor. This 
pattern is at the heart of many important parallel applications. On 
hypercubes, multiphase complete exchange has been developed and 
shown to provide optimal performance over varying message sizes. 

Most commercial multicomputer systems do not have a hypercube 
interconnect. However they use special purpose hardware and ded- 
icated communication processors to achieve very high performance 
communication and can be made to emulate the hypercube quite well. 

Multiphase complete exchange has been implemented on three con- 
temporary parallel architectures: the Intel Paragon, IBM SP2 and 
Meiko CS-2. The essential features of these machines are described 
and their basic interprocessor communication overheads are discussed. 
The performance of multiphase complete exchange is evaluated on 
each machine. It is shown that the theoretical ideas developed for 
hypercubes are also applicable in practice to these machines and that 
multiphase complete exchange can lead to major savings in execution 
time over traditional solutions. 
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1 Introduction 

Interprocessor communication overhead is one of the key factors that limit 
the performance of massively parallel systems. Considerable effort is re- 
quired to minimize this overhead and no general solutions are as yet in sight. 
No amount of special hardware or software can eliminate communication 
overhead. This paper concentrates on the complete exchange or all-to-all 
personalized communication pattern. This pattern requires each of a col- 
lection of n processors to send a unique message to each of the remaining 
n — 1 processors. Complete exchange is required in many important paral- 
lel algorithms, such as Fast Fourier Transforms, matrix-vector multiply, the 
alternating directions implicit (ADI) method for solving partial differential 
equations, and so on. This is the severest communication requirement that 
can be imposed on an interprocessor communication network and serves as 
a useful benchmark of the performance of a parallel computer system. 

Prior work on the complete exchange has largely focused on hypercube 
architectures. Most current commercial multiprocessors are not hypercubes. 
However, modern machines have powerful interconnection hardware and can 
be made to emulate hypercubes with fair success. We describe the perfor- 
mance of multiphase complete exchange, a family of algorithms originally de- 
signed for hypercubes, on three contemporary machines: the Intel Paragon, 
the IBM SP2 and the Meiko CS-2. We discuss the architectures of these ma- 
chines, present their basic performance parameters and then describe how 
the multiphase algorithm performs on all three. 

2 The Complete Exchange 

The complete exchange is a communication pattern that is required in 
many important applications such as matrix transposition, matrixvector mul- 
tiply, Fast Fourier Transforms and the Alternating Directions Implicit (ADI) 
method for solving partial differential equations. To understand the data 
movement required by this pattern refer to Figure 1 which shows a 4 x 4 
block matrix stored on 4 processors. In part (a) of this Figure the matrix 
is stored in column order. In part (c) the layout has been changed to row 
order. It is clear that to change from (a) to (c), each processor must transmit 
a block of data to every other processor. This is shown in part (b) which is 
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Figure 1: Complete Exchange on 4 Processors. To change storage of blocks from 
column order (a) to row order (c), each processor must send a distinct message to 
every other processor (b). 

a complete directed graph of four nodes. In general, complete exchange on 
n processors can be represented by a complete directed graph of n nodes. 

Most of the work to date on algorithms for the complete exchange has 
addressed hypercube architectures. Figure 2 shows a hypercube of dimension 
d = 4 with n = 2d — 16 processors. Each processor is given a binary label and 
two processors are connected with a communication link if and only if their 
labels differ in exactly one bit. Each processor in a hypercube is connected to 
d—1 other processors. As we increase the size of the hypercube, the number 
of communication links leaving a processor increases logarithmically with the 
number of nodes. This is the main reason for the difficulty of constructing 
hypercubes. Nevertheless, hypercubes have enjoyed success since their rich 
and recursively definable interconnection permits the development of elegant 
algorithms for communication. The Intel iPSC-2 & 860 and the nCube2 & 
3 are examples of commercially produced hypercubes. 

Almost all hypercubes use the "e-cube" routing algorithm for moving 
data between processors. In essence this algorithm moves the message from 
processor to processor by moving in a direction that successively increases 



Figure 2: A hypercube of dimension d — 4 and size n = 2d = 16. Each node is 
labeled in binary. Two nodes are connected if their binary labels differ in exactly 
one bit position. 



the match between current processor and the destination. Thus to travel 
from processor 0010 to 1001, the path taken would be: 0010 —> 0011 —> 
0001 —» 1001. On modern hypercubes, this message transmission is handled 
by special communications hardware and does not disturb the computations 
being carried out at intermediate nodes. 

The time required to transmit a message from one node to another (as- 
suming no contention for communication links) is modeled by the expression 
t = X + rm, where m is the message size in bytes, T the time per byte (which 
is the inverse of the communication bandwidth) and A is the startup over- 
head, which is due largely to operating system activities required to launch 
the message. This expression applies equally well to the non-hypercube ar- 
chitectures discussed later in this paper. Over the past decade, improvements 
in technology have made r improve from about 0.1//sec to less than O.Ol^isec. 
However, the startup time has remained in the 50 — 100/xsec range. 

2.1    Standard Exchange 

The standard exchange algorithm was developed by Johnsson h Ho [7]. 
The following pseudo-code executes on each processor while running this 
algorithm, mynumber is the label on each processor, as described in Figure 
2. The symbol © stands for bitwise exclusive-or. 

Standard_exchange{ 
for j= d — 1 downto 0 do{ 

if (bit j of mynumber = 0) 
message=blocks n/2 to n — 1 

else 
message=blocks 0 to n/2 — 1 

send_message_to_processor( (mynura&er) © (2-7)) 
shuffle blocks; 

} 
} 

Figure 3 clarifies the operation of this algorithm, which requires a total of 
logn transmissions of n/2 blocks each. Blocks of data must be permuted 
between each communication step in order to correctly route them to their 
destinations.    The logarithmic number of transmissions of this algorithm 



Figure 3: The standard exchange algorithm takes d steps. During the jth. step, 
nodes that differ in bit position j interchange data (indicated by double headed 
arrows in the figure). The figure shows the entire algorithm with each double 
headed arrow standing for an interchange of messages between the processors at its 
endpoints. The label on each arrow is the step in which the exchange is carried out. 
Since every possible pair of processors does not interchange messages it is clear 
that messages must be forwarded through intermediate nodes to their ultimate 
destinations. Shuffling of the blocks is required to route correctly blocks to their 
destinations. 



Figure 4: The direct exchange algorithm takes n — 1 steps. During step i, node 
j sends a block to processor i © j. The figure shows data movement for step 
i = 0101. No data permutation is required in this algorithm as each message block 
is transmitted directly to its ultimate destination. 

reduces the impact of startup time A (discussed above) and leads to very- 
good performance when message sizes are small. 

2.2    Direct Exchange 

This algorithm transmits each block directly to its ultimate destination 
(Figure 4). It was originally published by Take [10]. Subsequent work on 
implementing it on the Intel iPSC-860 hypercubes was carried out by Seidel 
[9] and Bokhari [4]. 

Direct_exchange{ 
for i= 1 to n — 1 do 

send_block_to_processor((mynumber) © (i)) 

} 

6 



This algorithm is asymptotically optimal in that it requires exactly n — 1 
messages of one block each to achieve the complete exchange. It is always the 
best algorithm to use for very large message sizes. The deceptively simple 
exclusive-or schedule guarantees that there is no contention for communi- 
cation links under the "e-cube" routing strategy. The fact that each block 
is transmitted directly to its destination means that there is no shuffling 
overhead. 

2.3    Multiphase Complete Exchange 

Multiphase complete exchange is a family of algorithms that compromises 
between the starting overhead of direct exchange and the shuffling and data 
transmission overhead of standard exchange. It was developed by Ho &; 
Raghunath [6] and subsequently investigated by Bokhari [2]. Figure 5 de- 
scribes the operation of this algorithm. 

A detailed exposition and analysis appears in [3, 8], where it is shown that 
each partition of the integer d (the dimension of the hypercube) leads to a 
multiphase algorithm for complete exchange. For example, for d = 5 the par- 
titions are {1,1,1,1,1}, {1,1,1,2}, {1,2,2}, {1,1,3}, {1,4}, {2,3} and {5}. 
In this set of partitions, {1,1,1,1,1} corresponds to standard exchange and 
{5} to direct exchange. Theory developed in [3, 8] shows that of the set of 
partitions of d only equipartitions (partitions in which the largest and smallest 
element differ by at most 1) can ever be optimal. Thus, for d = 5 the optimal 
multiphase algorithms are those corresponding to {1,1,1,1,1},{1,2,2},{2,3} 
and {5}. It can be proved that the number of these optimal partitions is no 
more than 2yd. This is a very small number since d, the dimension of the 
hypercube, equals log n, where n is the number of nodes. Figure 6 shows the 
run times of the family of multiphase algorithms plotted against message size 
for a hypothetical hypercube of dimension d = 5. Some algorithms have run 
times that are never optimal and are of no interest to us. The three algo- 
rithms of interest are the ones corresponding to the partitions {1,1,1,1,1}, 
{2,3} and {5} because these are the ones that are optimal. 
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Figure 5: A multiphase algorithm on a 16 node hypercube. (a) Shows direct 
exchanges being carried out separately on two 8 node subcubes. This is followed 
(b) by direct exchanges on 8 two node hypercubes. A data permutation step is 
required between (a) and (b) to correctly route the data. 
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message size (bytes) 

Figure 6:   Only multiphase algorithms corresponding to equipartitions can ever 
be optimal. The figure shows what can happen when d = 5. 



Figure 7: The mesh interconnect of a 4 x 4 Paragon. The circles represent compute 
nodes while the squares show special purpose hardware for communication. Mes- 
sage routing is done via the "row-column" algorithm explained in the text. The 
figure shows two pairs of processors communicating and contending for a single 
edge. Such edge contention can lead to substantial overhead. 

3    The Architectures 

The machines on which we evaluated the multiphase complete exchange are 
the Intel Paragon, IBM SP2 and Meiko CS-2. All three machines are in 
commercial production and incorporate special purpose hardware for inter- 
processor communication. 

3.1     Intel Paragon 

The Intel Paragon on which the experiments described in this report 
were carried out is located at the Center for Advanced Computing Research 
at Caltech. It is a mesh-connected machine with 512 processors arranged in 
a 32 x 16 rectangle. Each processor is connected to four neighbors through 
special purpose hardware (Figure 7).   Each node on this machine has two 
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Figure 8: A multistage interconnect of the type used in the SP2 or CS-2. Each 
square represents a 4 x 4 bidirectional crossbar switch. Any two processors can be 
connected to each other by suitably setting the switches. Most of the connections 
leading into the topmost layer have been omitted to avoid a congested diagram. 

Intel i860 processors (one for computation and one for communication) and 
32 MBytes of memory. The i860s run at 50MHz and are capable of 75 MFlops 
each. Programming on this machine was done in C augmented with the nx 
message passing library. This library permits programs to send and receive 
messages from other processors, carry out global synchronization, compute 
global sums, etc., via calls to C functions. Message routing on this machine is 
done using the "row-column" rule. A message first travels along a row until 
it reaches the column on which the destination lies. It then travels along the 
column until it reaches the destination. 

3.2    IBM SP2 

The Cornell Theory Center's 512 node IBM SP2 multicomputer was used 
for these experiments. The processors on this machine are interconnected 
through a multistage switch (Figure 8). Each square box in this figure rep- 
resents a bidirectional 4x4 switch. In theory each processor can talk to any 
other without contention for switches or links. In practice the setting up of 
such connections is difficult to implement on the fly and significant degra- 
dation due to contention is seen. Each computational node (not shown in 
Figure 8) has a P0WER2 architecture RS/6000 processor that runs at 66.7 
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MHz, has at least 128 MBytes of memory, and is capable of 266 MFlops. 
This machine was programmed in C using the MPI message passing library 
[5]. MPI provides roughly the same functions on the SP2 as the nx library 
does on the Paragon. 

3.3    Meiko CS-2 

The Vienna Center for Parallel Computing has recently installed a Meiko 
CS-2. This is a 128 processor machine interconnected through a multistage 
switch similar to that of the SP2 (Figure 8). Each node is a SuperSPARC 
running at 50MHz, with 64 MBytes of memory and capable of 100 MFlops. 
This machine was programmed in C using the mpsc library which is designed 
to be fully compatible with the nx library on the Intel hypercubes and the 
Paragon. 

While all three machines incorporate powerful interprocessor communica- 
tion mechanisms, the programmer still has to take many factors into account 
in order to implement efficient parallel algorithms. These issues are discussed 
in detail by Bokhari [1]. 

4    Performance Measurements 

There are 3 key performance figures of a parallel machine that determine its 
success at executing multiphase complete exchange. These are 

Communication time: the time required to send a message of m bytes 
from one processor to another. 

Synchronization time: the time for the machine to execute a barrier (that 
is, to ensure that all processors have reached a specified point in the 
parallel program.) This is important because multiphase complete ex- 
change requires data transfers to be carefully scheduled for correct op- 
eration. 

Memory copy time: Excluding the purely direct algorithm, all multiphase 
algorithms require some amount of data permutation within a single 
processor in order to route data blocks to their correct destination. 
Thus, memory-to-memory transfer time within the same processor is 
an important measure of performance. 

12 
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Figure 9: Communication time on the Paragon, SP2 and CS-2. 

Figure 9 shows the communication time for all three machines, measured 
over the range 0 to 16000 bytes in increments of 64 bytes. The discontinuities 
in the Paragon plots are caused by packetization overhead. The spikes on 
the plots for the SP2 and CS-2 are caused by interference from other jobs 
or by operating system events. Table 1 summarizes this information and 
also includes measurements of synchronization and memory copy time. The 
expressions for run times are for messages smaller than 8000 bytes, as this 
is the range of interest to us as far as the multiphase complete exchange is 
concerned. 

5    Experimental Measurements 

Figures 10 and 11 show the performance of the multiphase complete ex- 
change on 32 and 64 processor pools on the three machines under study. On 
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Mem. copy 
(//sec/byte) 

Barrier (fisec) 
2d procs. 

Communi cation 
(//sec per byte) 

Paragon 0.0140 126d — 113 75 +0.011m 
SP2 0.0043 72d - 52 70 + 0.043m 

CS-2 0.0153 17J-5.6 105 + 0.025m 

Table 1: Summary of performance figures 

the Paragon we use 4 x 8 and 8x8 submeshes while on the SP2 the allocation 
of processors is beyond our control. On the CS-2 we obtained measurements 
over contiguously numbered sets of processors. 

The plots obtained have the general shape predicted by the theory of 
[3, 8]. The direct algorithms {5} and {6} are optimal for large message sizes. 
The standard algorithms {1,1,1,1,1} and {1,1,1,1,1,1} tend to have good 
performance for very small message sizes. The algorithms corresponding to 
equipartitions of cardinality 2, that is {2,3} and {3,3} are always optimal for 
small message sizes. This is very similar to the results for the Intel iPSC-860 
hypercube given in [2]. 

In Figures 10 and 11 we have also plotted the predicted run time of the 
two best algorithms based on the performance figures given in Table 1 and 
the formulae in [3]. The agreement here is very poor and the predicted plots 
serve only to give a qualitative idea of the shape of the measured plots. 
This is because the predicted curves assume a hypercube interconnect which 
can execute the multiphase algorithm without any contention for commu- 
nication links. Our machines are not hypercubes and suffer from link and 
switch contention. Nevertheless these plots show the benefits of adopting the 
multiphase approach. 

The noise or fluctuation in the plots for the SP2 are particularly note- 
worthy. We believe this to be caused by contention for switches by jobs 
other than our own job. Very wide fluctuations are encountered on the SP2, 
making the task of predicting performance very difficult. 

The intensity of the complete exchange communication pattern stresses 
communication hardware and software very severely. On the SP2 we were 
unable to run successfully beyond 64 processors because of switch problems 
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presumably caused by intense communication. On the Paragon, although we 
were able to run on submeshes as large as 16 x 16, the operating system could 
not accommodate the 255 message receives required by the direct algorithm 
{8} for the entire range of message sizes. The plot for this algorithm in 
Figure 12 stops abruptly at 1728 bytes for this reason. 

These experiences, though unpleasant, underline the utility of multiphase 
complete exchange as a "stress test" of communication hardware and soft- 
ware. We are confident that the problems encountered will be resolved by 
the respective manufacturers in due course. 

6    Conclusions 

Interprocessor communication is what makes parallel programming challeng- 
ing. This paper has explored the performance of three contemporary parallel 
machines when carrying out the complete exchange—the densest communica- 
tion pattern possible. We have shown that the multiphase complete exchange 
family of algorithms, which were originally developed for hypercubes, per- 
form well on modern non-hypercube machines. 

The performance of multiphase exchange on these machines does not 
match well the figures predicted from basic performance parameters. This is 
because there are complex effects of link contention, switch contention, pag- 
ing disturbance and overheads due to operating system timer interrupts on 
these machines that are not captured by the basic parameters. Furthermore, 
although these machines can execute hypercube algorithms with good per- 
formance, they are really not hypercubes and thus suffer from a mismatch of 
the algorithm to the architecture. This observation demonstrates the falsity 
of the commonly held belief that, in modern parallel machines, the matching 
of algorithm to architecture is irrelevant. If that had been the case, these 
machines would have given us predictable performance, as is the case with 
hypercube implementations of the same algorithms [2]. 

The complete exchange problem is severe enough to have uncovered sev- 
eral problems with the communication hardware and software of two of the 
machines studied. This points out the utility of using it as an extremely 
stressful test of parallel architectures. 

Future work in this area should address the problem of designing exchange 
algorithms that take the specific architectures of these and other modern 
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machines into account. It would also be useful to study the Paragon, SP2 
and CS-2 in greater detail, so that a more precise performance model can 
be developed. Such a model will be invaluable in permitting practitioners to 
evaluate the efficiency of their parallel algorithm implementations. 
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